HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use ARALAST NP safely and effectively. See full prescribing information for ARALAST NP.

ARALAST NP [Alpha1-Proteinase Inhibitor (Human)]
For Intravenous Use. Lyophilized Powder for Solution for Injection

Initial U.S. Approval: 2002

INDICATIONS AND USAGE
ARALAST NP is an Alpha 1-Proteinase Inhibitor (Human) (Alpha1-PI) indicated for chronic augmentation therapy in adults with clinically evident emphysema due to severe congenital deficiency of Alpha1-PI (alpha1-antitrypsin deficiency). ARALAST NP increases antigenic and functional (anti-neutrophil elastase capacity, ANEC) serum levels and antigenic lung epithelial lining fluid levels of Alpha1-PI. (1)
The effect of augmentation therapy with any Alpha1-PI, including ARALAST NP, on pulmonary exacerbations and on the progression of emphysema in alpha1-antitrypsin deficiency has not been conclusively demonstrated in randomized, controlled clinical trials. (1)
Clinical data demonstrating the long-term effects of chronic augmentation and maintenance therapy of individuals with ARALAST NP or ARALAST are not available. (1)
ARALAST NP is not indicated as therapy for lung disease in patients in whom severe Alpha1-PI deficiency has not been established. (1)

DOSAGE AND ADMINISTRATION
For Intravenous Use Only
• Recommended dosage is 60 mg/kg body weight administered once weekly by intravenous infusion. (2.1)
• Administer at a rate not to exceed 0.2 mL/kg body weight/minute, and as determined by the response and comfort of the patient. (2.3)

DOSAGE FORMS AND STRENGTHS
Available as a lyophilized powder in single dose vials containing 0.5 gram or 1 gram of functional Alpha1-PI. (3)

CONTRAINDICATIONS
Immunoglobulin A (IgA) deficient patients with antibodies against IgA. (4)

WARNINGS AND PRECAUTIONS
• Severe hypersensitivity and anaphylactic reactions may occur in IgA deficient patients with antibodies against IgA. (5.1)
• May carry a risk of transmitting infectious agents such as viruses, the variant Creutzfeldt-Jakob disease (vCJD) and theoretically, the Creutzfeldt-Jakob disease (CJD) agent, despite manufacturing steps designed to minimize the risk of viral transmission. (5.2)

ADVERSE REACTIONS
Most common adverse reaction occurring in ≥5% of infusions in clinical studies were headache, musculoskeletal discomfort, vessel puncture site bruise, nausea, and rhinorrhea. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Baxalta US Inc at 1-800-999-1785 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION.

Revised: 12/2018

FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE
2 DOSAGE AND ADMINISTRATION
 2.1 Dosage
 2.2 Reconstitution
 2.3 Administration
3 DOSAGE FORMS AND STRENGTHS
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
 5.1 Hypersensitivity Reactions
 5.2 Transmission of Infectious Agents
6 ADVERSE REACTIONS
 6.1 Clinical Trials Experience
 6.2 Postmarketing Experience
8 USE IN SPECIFIC POPULATIONS
 8.1 Pregnancy
 8.2 Lactation
 8.4 Pediatric Use
 8.5 Geriatric Use
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
 12.1 Mechanism of Action
 12.2 Pharmacodynamics
 12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
14 CLINICAL STUDIES
15 REFERENCES
16 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed.
ARALAST NP [Alpha1-Proteinase Inhibitor (Human)] For Intravenous Use. Lyophilized Powder for Solution for Injection

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE
ARALAST NP is an Alpha1-Proteinase Inhibitor (Alpha1-PI) indicated for chronic augmentation therapy in adults with clinically evident emphysema due to severe congenital deficiency of Alpha1-PI (alpha1-antitrypsin deficiency). ARALAST NP increases antigenic and functional (anti-neutrophil elastase capacity, ANEC) serum levels and antigenic lung epithelial lining fluid levels of Alpha1-PI.

The effect of augmentation therapy with any Alpha1-PI, including ARALAST NP, on pulmonary exacerbations and on the progression of emphysema in alpha1-antitrypsin deficiency has not been conclusively demonstrated in randomized, controlled clinical trials. Clinical data demonstrating the long-term effects of chronic augmentation and maintenance therapy with ARALAST NP or ARALAST are not available. ARALAST NP is not indicated as therapy for lung disease in patients in whom severe congenital Alpha1-PI deficiency has not been established.

2 DOSAGE AND ADMINISTRATION
For Intravenous Use Only

2.1 Dosage
- Dose ranging studies using efficacy endpoints have not been performed.
- Administer 60 mg/kg body weight of ARALAST NP once weekly by intravenous infusion.

2.2 Reconstitution
1. Use aseptic technique.
2. Allow ARALAST NP and diluent to reach room temperature before reconstitution.
3. Remove caps from the diluent and product vials.
4. Swab the exposed stopper surfaces with alcohol.
5. Remove cover from one end of the double-ended transfer needle. Insert the exposed end of the needle through the center of the stopper in the diluent vial.
6. Remove plastic cap from the other end of the double-ended transfer needle now seated in the stopper of the diluent vial. To reduce any foaming, invert the vial of diluent and insert the exposed end of the needle through the center of the stopper in the product vial at an angle, making certain that the diluent vial is always above the product vial. The angle of insertion directs the flow of diluent against the side of the product vial. Refer to Figure below. The vacuum in the vial is sufficient to allow transfer of all of the diluent.
7. Disconnect the two vials by removing the diluent vial from the transfer needle. This allows any remaining low pressure in the product vial to equalize. Next, remove the double-ended transfer needle from the product vial and discard the needle into the appropriate safety container.
8. Let the vial stand until most of the contents is in solution, then GENTLY swirl until the powder is completely dissolved. Reconstitution requires no more than five minutes for a 0.5 gram vial and no more than 10 minutes for a 1 gram vial.
 - Note: Do not shake the content of the vial. Do not invert the vial until ready to withdraw content.
9. Reconstituted product is a colorless or slightly yellow to yellow-green solution.
10. A few small visible particles may occasionally remain in the reconstituted product. These will be removed by the sterile 20 micron filter supplied with the product.

2.3 Administration
For intravenous infusion
1. Inspect the reconstituted product visually for particulate matter and discoloration prior to administration.
2. Several vials may be pooled into an empty, sterile intravenous solution container using aseptic technique and a sterile 20 micron filter supplied with the product.
3. Administer ARALAST NP within three hours after reconstitution to reduce the risk of harmful microbial growth. Discard any unused contents.
4. Administer ARALAST NP alone, without mixing with other agents or diluting solutions.

Infusion Rate
- Administer ARALAST NP at a rate not to exceed 0.2 mL per kg body weight per minute, and as determined by the response and comfort of the patient.
- Reduce the infusion rate or halt the infusion if adverse reactions occur. Resume the infusion at a rate tolerated by the patient after symptoms subside.

3 DOSAGE FORMS AND STRENGTHS
ARALAST NP is available as a lyophilized powder in single dose vials containing 0.5 gram or 1 gram of functional Alpha1-PI.

4 CONTRAINDICATIONS
ARALAST NP is contraindicated in immunoglobulin A (IgA) deficient patients with antibodies against IgA, due to the risk of severe hypersensitivity.

5 WARNINGS AND PRECAUTIONS

5.1 Hypersensitivity Reactions
ARALAST NP may contain trace amounts of IgA. Patients with known antibodies to IgA, which can be present in patients with selective or severe IgA deficiency, have a greater risk of developing severe hypersensitivity and anaphylactic reactions. Closely follow the recommended infusion rate [see Dosage and Administration (2.3)]. Monitor vital signs continuously and observe the patient carefully throughout the infusion. Discontinue the infusion if hypersensitivity symptoms occur and administer appropriate emergency treatment. Have epinephrine and other appropriate supportive therapy available for the treatment of any acute anaphylactic or anaphylactoid reaction.

5.2 Transmission of Infectious Agents
Because this product is made from human plasma, it may carry a risk of transmitting infectious agents, such as viruses, the variant Creutzfeldt-Jakob disease (vCJD) and theoretically, the Creutzfeldt-Jakob disease (CJD) agent. This also applies to unknown or emerging viruses and other pathogens. The risk of transmitting an infectious agent has been minimized by screening plasma donors for prior exposure to certain viruses, by testing for the presence of certain virus infections and by inactivating and removing certain viruses during the manufacturing process. Despite these measures, such products may still potentially transmit human pathogenic agents.

No seroconversions for hepatitis B or C (HBV or HCV) or human immunodeficiency virus (HIV) or any other known infectious agent were reported with the use of ARALAST NP during clinical studies. All infections thought by a physician to possibly have been transmitted by this product should be reported by the physician or other healthcare provider to Baxalta US Inc., at 1-800-423-2090 (in the U.S.).

6 ADVERSE REACTIONS
Hypersensitivity reactions have been reported in patients following administration of ARALAST/ARALAST NP [see Warnings and Precautions (5.1)].

No serious adverse reactions related to the use of ARALAST NP were reported in clinical trials. The most common adverse reactions occurring in ≥5% of infusions in clinical trials were headache, musculoskeletal discomfort, vessel puncture site bruise, nausea, and rhinorhea.

6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be
ARALAST NP [Alpha_1-Proteinase Inhibitor (Human)] For Intravenous Use. Lyophilized Powder for Solution for Injection

directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

The safety of ARALAST NP was evaluated in a total of 38 subjects with severe congenital Alpha_1-PI deficiency (pre-augmentation therapy serum levels of Alpha_1-PI of less than 11 microM) in two clinical trials. The crossover trial was a multicenter, randomized, double-blind, single-dose pharmacokinetic (PK) comparability trial conducted in 25 subjects with severe congenital Alpha_1-PI deficiency to evaluate the pharmacokinetics of ARALAST NP (test drug, 60 mg/kg body weight) as compared to ARALAST (reference drug, 60 mg/kg body weight), each infused at a rate of 0.2 mL/kg body weight/minute. The BAL trial was a multicenter, open-label, non-randomized trial in 13 subjects with severe congenital Alpha_1-PI deficiency to determine the safety and effects of weekly augmentation therapy with ARALAST NP (60 mg/kg body weight/week) administered at a rate of 0.2 mL/kg body weight/minute in elevating Alpha_1-PI levels in serum and epithelial lining fluid (ELF).

In both trials, there were no deaths and no serious adverse reactions associated with ARALAST NP or ARALAST administration. None of the subjects withdrew from the trial due to an adverse reaction. There was no reduction in infusion rate at 0.2 mL/kg body weight/min or infusion discontinuation/interruption due to an adverse reaction, except for one subject in the crossover trial who experienced pain at infusion site during ARALAST administration.

Table 1 summarizes the number of subjects, the total number of infusions, and the rate of adverse reactions (ARs) associated with ARALAST NP or ARALAST treatment for each clinical trial.

Table 1 Number of Subjects/Infusions/Adverse Reactions (ARs) occurring during ARALAST NP or ARALAST Treatment

<table>
<thead>
<tr>
<th></th>
<th>Crossover Trial</th>
<th></th>
<th>BAL Trial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARALAST NP</td>
<td>ARALAST</td>
<td>ARALAST</td>
<td></td>
</tr>
<tr>
<td>No. of subjects treated</td>
<td>25</td>
<td>25</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>No. of infusions</td>
<td>25</td>
<td>25</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>No. (%) of subjects with serious ARs</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>No. of serious ARs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No. (%) of subjects with non-serious ARs</td>
<td>12 (48%)</td>
<td>13 (52%)</td>
<td>4 (31%)</td>
<td></td>
</tr>
<tr>
<td>No. of non-serious ARs</td>
<td>26</td>
<td>21</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>No. (%) of Mild ARs</td>
<td>21 (81%)</td>
<td>16 (76%)</td>
<td>8 (57%)</td>
<td></td>
</tr>
<tr>
<td>No. (%) of Moderate ARs</td>
<td>5 (19%)</td>
<td>5 (24%)</td>
<td>5 (36%)</td>
<td></td>
</tr>
<tr>
<td>No. (%) of Severe ARs</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td></td>
</tr>
</tbody>
</table>

* An adverse reaction (AR) is any adverse event which met any of the following criteria: (a) an adverse event that began during infusion or within 72 hours following the end of product infusion, or (b) an adverse event considered by the investigator to be at least possibly related to product administration, or (c) an adverse event for which causality assessment was missing or indeterminate.

** Expressed as number of events (N) divided by total number of infusions, then multiplied by 100.

ARALAST was evaluated for up to 96 weeks in 27 subjects with a congenital deficiency of Alpha_1-PI and clinically evident emphysema. During the initial 10 weeks of the trial, subjects were randomized to receive either ARALAST or a commercially available preparation of Alpha_1-PI (PROLASTIN). During the entire period of administration of ARALAST, the most common adverse reactions occurring at a rate of >0.5% of infusions included pharyngitis (1.2%), headache (0.8%), and cough increased (0.5%). Adverse reactions that occurred at rates < 0.5% included somnolence, rash, tinnitus, back pain, chest pain, peripheral edema, dizziness, insomnia, bronchitis, abdomen enlarged, abdominal pain, allergic reaction, pruritus, chills, fever, vasodilation, nausea, hypotonia, hypotension, nervousness, asthma, dyspnea, lung disorder, abnormal vision, conjunctivitis, and dysmenorrhea.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ARALAST NP N (%)</th>
<th>ARALAST N (%)</th>
<th>ARALAST NP N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>4 (16%)</td>
<td>3 (12%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Musculoskeletal discomfort</td>
<td>4 (16%)</td>
<td>2 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Vascular puncture site bruise</td>
<td>2 (8%)</td>
<td>4 (16%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>0 (0%)</td>
<td>2 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>2 (8%)</td>
<td>2 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Rhinorrhea</td>
<td>1 (4%)</td>
<td>0 (0%)</td>
<td>6 (6%)</td>
</tr>
</tbody>
</table>

A mild reaction was defined as a transient discomfort that does not interfere with the subject's normal functioning level, or an adverse event for which causality assessment was missing or indeterminate.

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>ARALAST NP N (%)</th>
<th>ARALAST N (%)</th>
<th>ARALAST NP N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>4 (16%)</td>
<td>3 (12%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Musculoskeletal discomfort</td>
<td>4 (16%)</td>
<td>2 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Vascular puncture site bruise</td>
<td>2 (8%)</td>
<td>4 (16%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>0 (0%)</td>
<td>2 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>2 (8%)</td>
<td>2 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Rhinorrhea</td>
<td>1 (4%)</td>
<td>0 (0%)</td>
<td>6 (6%)</td>
</tr>
</tbody>
</table>

A moderate reaction was defined as an event that is considered related to study product and that produces limited impairment of function and can require therapeutic intervention, or that produces no sequelae.

A severe reaction was defined as an event that is considered related to study product and that results in a marked impairment of function and can lead to temporary inability to resume usual life pattern, or that produces sequelae which requires prolonged therapeutic intervention.

The most common ARs (defined as adverse reactions occurring in ≥5% of infusions) in each clinical trial are shown in Table 2.

Immunogenicity

- The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralizing antibody) positivity in an assay may be influenced by several factors including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies to ARALAST NP with the incidence of antibodies to other products may be misleading.
ARALAST NP [Alpha 1-Proteinase Inhibitor (Human)] For Intravenous Use. Lyophilized Powder for Solution for Injection

- Immunogenicity of ARALAST NP was evaluated in the BAL trial. None of the treated subjects developed antibodies against ARALAST NP.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of ARALAST NP. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Vascular Disorders: flushing
Gastrointestinal Disorders: Vomiting, Diarrhea
Skin and Subcutaneous Tissue Disorders: Urticaria
Musculoskeletal and Connective Tissue Disorders: Myalgia

General and Administration Site Conditions: Injection site reaction, Fatigue, Malaise, Asthenia, Feeling abnormal

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

There are no data with ARALAST NP use in pregnant women to inform a drug-associated risk. Animal reproduction studies have not been conducted with ARALAST NP. It is also not known whether ARALAST NP can cause fetal harm when administered to pregnant women or can affect reproductive capacity.

In the U.S. general population, the estimated background risk of major birth defect and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

8.2 Lactation

Risk Summary

There is no information regarding the presence of ARALAST NP in human milk, the effect on the breastfed infant, or the effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for ARALAST NP and any potential adverse effects on the breastfed infant from ARALAST NP or from the underlying maternal condition.

8.4 Pediatric Use

Safety and effectiveness in pediatric patients have not been established.

8.5 Geriatric Use

Clinical studies of ARALAST NP did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. As for all patients, dosing for geriatric patients should be appropriate to their overall situation. Safety and effectiveness in patients over age 65 years of age have not been established.

11 DESCRIPTION

ARALAST NP contains approximately 2% Alpha 1-PI with truncated C-terminal lysine (removal of Lys394), whereas ARALAST contains approximately 67% Alpha 1-PI with the C-terminal lysine truncation. No known data suggest influence of these structural modifications on the functional activity and immunogenicity of Alpha 1-PI. ARALAST NP is a sterile, lyophilized preparation of purified human alpha 1-proteinase inhibitor (Alpha 1-PI), also known as alpha 1-antitrypsin (AAT). ARALAST NP is a similar product to ARALAST, containing the same active components of plasma Alpha 1-PI with identical formulations.

ARALAST NP is prepared from large pools of human plasma by using the cold ethanol fractionation process, followed by purification steps including polyethylene glycol and zinc chloride precipitations and ion exchange chromatography. To reduce the risk of viral transmission, the manufacturing process includes treatment with a solvent detergent (S/D) mixture [tri-n-butyl phosphate and polysorbate 80] to inactivate enveloped viral agents such as human immunodeficiency virus (HIV), hepatitis B (HBV), and hepatitis C (HCV). In addition, a nanofiltration step is incorporated into the manufacturing process to reduce the risk of transmission of enveloped and non-enveloped viral agents. Based on in vitro studies, the process used to produce ARALAST NP has been shown to inactivate and/or partition various viruses as shown in Table 3 below.

Table 3 Virus Log Reduction in ARALAST NP Manufacturing Process

<table>
<thead>
<tr>
<th>Processing Step</th>
<th>HIV-1</th>
<th>BVDV</th>
<th>PRV</th>
<th>HAV</th>
<th>MMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold ethanol fractionation</td>
<td>4.6</td>
<td>1.4</td>
<td>2.1</td>
<td>1.4</td>
<td>≤1.0*</td>
</tr>
<tr>
<td>Solvent Detergent-treatment</td>
<td>>5.8</td>
<td>>6.0</td>
<td>>5.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>15 N nanofiltration</td>
<td>>5.3</td>
<td>>6.0</td>
<td>>5.6</td>
<td>>5.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Overall reduction factor</td>
<td>>15.7</td>
<td>>13.4</td>
<td>>13.2</td>
<td>>6.5</td>
<td>4.9</td>
</tr>
</tbody>
</table>

* Reduction factors ≤ 1 are not used for calculation of the overall reduction factor.

Reconstitution volume: 50 mL/1 g vial
Reconstitution volume: 25 mL/0.5 g vial

Each vial of ARALAST NP has the functional activity, as determined by inhibition of porcine pancreatic elastase, stated on the label. The formulation contains no preservative. The pH of the solution ranges from 7.2 to 7.8. Product must only be administered intravenously.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

ARALAST NP administration is intended to inhibit serine proteases such as neutrophil elastase (NE), which is capable of degrading protein components of the alveolar walls and which is chronically present in the lung. Alpha 1-PI deficiency is an autosomal, co-dominant, hereditary disorder characterized by low serum and lung levels of Alpha 1-PI. Severe forms of the deficiency are frequently associated with slowly progressive, moderate-to-severe panacinar emphysema that most often manifests in the third to fourth decades of life. However, an unknown percentage of individuals with severe Alpha 1-PI deficiency are not diagnosed with or may never develop clinically evident emphysema during their lifetimes. Individuals with Alpha 1-PI deficiency have little protection against NE released by neutrophils in their lower respiratory tract, resulting in a protease:protease inhibitor imbalance in the lung. This imbalance allows relatively unopposed destruction of the connective tissue framework of the lung parenchyma. There are a large number of phenotypic variants of this disorder. Individuals with the PiZZ variant typically have serum Alpha 1-PI levels less than 35% of the average normal level. Individuals with the Pi(*) variant have undetectable Alpha 1-PI protein in their serum. Individuals with these low serum Alpha 1-PI levels, i.e., less than 11 microM, have an increased risk of developing emphysema over their lifetimes. In addition, PiSZ individuals, whose serum Alpha 1-PI levels range from approximately 9 to 23 microM, are considered to have moderately increased risk for developing emphysema, regardless of whether their serum Alpha 1-PI levels are above or below 11 microM. The risk of accelerated development
and progression of emphysema in individuals with severe \(\alpha_1 \)-PI deficiency is higher in smokers than in ex-smokers or non-smokers.

Not all individuals with severe genetic variants of \(\alpha_1 \)-PI deficiency have emphysema. Augmentation therapy with \(\alpha_1 \)-Proteinase Inhibitor (Human) is indicated only in patients with severe congenital \(\alpha_1 \)-PI deficiency who have clinically evident emphysema.

Augmenting the levels of functional \(\alpha_1 \)-proteinase inhibitor by intravenous infusion is an approach to therapy for patients with \(\alpha_1 \)-PI deficiency. However, the efficacy of augmentation therapy in affecting the progression of emphysema has not been demonstrated in randomized, controlled clinical trials. The intended theoretical goal is to provide protection to the lower respiratory tract by correcting the imbalance between neutrophil elastase and protease inhibitors. Whether augmentation therapy with ARALAST NP actually protects the lower respiratory tract from progressive emphysematous changes has not been evaluated. Although the maintenance of blood serum levels of \(\alpha_1 \)-PI (60 mg/kg) in Subjects with Congenital \(\alpha_1 \)-PI Deficiency After a Single Intravenous Infusion of ARALAST NP and ARALAST demonstrated in adequately powered, randomized, double-blind, placebo-controlled trials for any \(\alpha_1 \)-PI product.

The clinical benefit of increased blood levels of \(\alpha_1 \)-PI at the recommended dose has not been established. The clinical efficacy of ARALAST NP in influencing the course of pulmonary emphysema or the frequency, duration, or severity of pulmonary exacerbations has not been demonstrated in randomized, controlled clinical trials.

12.2 Pharmacodynamics

Chronic augmentation therapy with a weekly dose of ARALAST NP at 60 mg/kg body weight to patients with \(\alpha_1 \)-PI deficiency increases the level of the deficient protein in plasma and in the epithelial lining fluid (ELF) as determined by antigenic assay. Normal individuals have plasma levels of \(\alpha_1 \)-PI greater than 20 microM. The clinical benefit of increased blood and ELF levels of \(\alpha_1 \)-PI at the recommended dose has not been demonstrated in adequately powered, randomized, double-blind, placebo-controlled trials for any \(\alpha_1 \)-PI product.

12.3 Pharmacokinetics

The pharmacokinetic comparability of ARALAST NP and the predecessor product ARALAST was demonstrated in a randomized, double-blind, crossover trial in 25 subjects (median age: 59 years old; range: 20 to 75 years old) with severe \(\alpha_1 \)-PI deficiency who received a single infusion of 60 mg/kg body weight of each product. Figure 1 depicts the mean ± standard deviation (SD) plasma \(\alpha_1 \)-PI concentration-time profiles measured using an enzyme-linked immunosorbent assay (ELISA). Table 4 summarizes the pharmacokinetic parameters of ARALAST NP and ARALAST.

Figure 1 Mean (± SD) Plasma \(\alpha_1 \)-PI Concentration-Time Profiles After a Single Intravenous Infusion of ARALAST NP and ARALAST (60 mg/kg) in Subjects with Congenital \(\alpha_1 \)-PI Deficiency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ARALAST NP Mean (± SD)</th>
<th>ARALAST NP Mean (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{max}})</td>
<td>1.6 (± 0.3) mg/mL</td>
<td>1.7 (± 0.3) mg/mL</td>
</tr>
<tr>
<td>(\text{AUC}_{0-35\text{d}} / \text{dose})</td>
<td>0.0837 (± 0.0212) day*kg/mL</td>
<td>0.0897 (± 0.0204) day*kg/mL</td>
</tr>
<tr>
<td>Half-life</td>
<td>4.7 (± 2.7) days</td>
<td>4.8 (± 2.0) days</td>
</tr>
</tbody>
</table>

\(C_{\text{max}} \): Maximum increase in plasma \(\alpha_1 \)-PI concentration following infusion; \(\text{AUC}_{0-35\text{d}} / \text{dose} \) = Area under the curve from time 0 to 35 days divided by dose; Half-life = terminal phase half-life determined using non-compartmental method.

The key pharmacokinetic parameter was \(\text{AUC}_{0-35\text{d}} / \text{dose} \). The 90% confidence interval (85.8% to 100.2%) for the geometric mean ratio of \(\text{AUC}_{0-35\text{d}} / \text{dose} \) for ARALAST NP and ARALAST indicated that the 2 products are pharmacokinetically equivalent.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term studies in animals to evaluate the carcinogenic potential of ARALAST NP have not been conducted. In vitro and in vivo testing of ARALAST NP for mutagenesis or impairment of fertility was not performed.

14 CLINICAL STUDIES

A clinical trial (ARALAST versus PROLASTIN trial) was conducted to compare the predecessor product ARALAST to a commercially available preparation of \(\alpha_1 \)-PI (PROLASTIN) in 28 subjects with congenital \(\alpha_1 \)-PI deficiency and emphysema, who had not received \(\alpha_1 \)-PI augmentation therapy within the preceding six months. Subjects were randomized to receive either ARALAST or PROLASTIN, 60 mg/kg intravenously per week for 10 consecutive weeks. Following their first 10 weekly infusions, the subjects who were receiving PROLASTIN were switched to ARALAST while those who already were receiving ARALAST continued to receive it. Table 5 summarizes the mean serum antigenic and functional \(\alpha_1 \)-PI trough levels measured prior to infusion at steady state (Weeks 8 through 11).

Table 4 Pharmacokinetic Parameters for Plasma Antigenic \(\alpha_1 \)-PI in 25 Subjects Following a Single 60 mg/kg Dose of ARALAST NP or ARALAST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ARALAST NP</th>
<th>ARALAST NP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td></td>
<td>(Range of means)</td>
<td>(Range of means)</td>
</tr>
<tr>
<td>Antigenic (\alpha_1)-PI</td>
<td>15.3 ± 2.5</td>
<td>16.9 ± 2.3</td>
</tr>
<tr>
<td></td>
<td>(14.7 to 15.5) microM</td>
<td>(16.2 to 17.2) microM</td>
</tr>
<tr>
<td>Functional (\alpha_1)-PI</td>
<td>15.3 ± 2.4</td>
<td>15.7 ± 2.6</td>
</tr>
<tr>
<td></td>
<td>(14.8 to 15.6) microM</td>
<td>(14.4 to 16.4) microM</td>
</tr>
</tbody>
</table>

Following weekly augmentation therapy with ARALAST or PROLASTIN, a gradual increase in peak and trough serum \(\alpha_1 \)-PI levels was noted, with stabilization after several weeks. The metabolic half-life of ARALAST was 5.9 days. Serum ANEC trough levels rose substantially in all subjects by Week 2, and by Week 3, serum ANEC trough levels exceeded 11 microM in the majority of subjects. With few exceptions, levels in both treatment groups remained above this level in individual subjects for the duration of the period Weeks 3 through 24. Although only five of fourteen subjects (35.7%) receiving ARALAST had BALs meeting acceptance criteria for analysis at both baseline and Week 7, a statistically significant increase in the antigenic level of \(\alpha_1 \)-PI in epithelial lining fluid (ELF) was observed. No statistically significant increase in the ANEC in the ELF was detected.

It was concluded that at a dose of 60 mg/kg administered intravenously once weekly, ARALAST and PROLASTIN had similar effects in maintaining target serum \(\alpha_1 \)-PI trough levels and increasing antigenic levels of \(\alpha_1 \)-PI in the ELF with maintenance augmentation therapy.
ARALAST NP [Alpha₁-Proteinase Inhibitor (Human)] For Intravenous Use. Lyophilized Powder for Solution for Injection

The pharmacokinetic comparability of ARALAST NP and the predecessor product ARALAST was demonstrated in a randomized, double-blind, crossover trial in 25 subjects with severe Alpha₁-PI deficiency [see Pharmacokinetics (12.3)].

Another clinical trial (BAL TRIAL) was conducted to determine the effects of open-label, weekly intravenous augmentation therapy with 60 mg/kg ARALAST NP on ELF levels of Alpha₁-PI, ANEC, and Alpha₁-PI: human neutrophil elastase (HNE) complexes in subjects with severe, congenital Alpha₁-PI deficiency. A total of 13 subjects completed 8 weekly infusions of ARALAST NP at a median dose of 63 mg (range: 58 to 67) mg/kg body weight at an infusion rate of 0.2 mL/kg/min. Of the 13 subjects, 12 had both baseline and post-treatment bronchoalveolar lavage samples.

ARALAST NP augmentation therapy resulted in a significant increase (p<0.0001; n=12) in the mean plasma of antigenic Alpha₁-PI levels, from a median baseline level of 4.0 microM (range: 3.1 to 6.3) microM to a median post-treatment level of 11.4 microM (range: 7.8 to 16.9) microM. While antigenic Alpha₁-PI levels in the ELF also increased significantly (p=0.0195; n=10) (Figure 2), only 4 out of 12 subjects were changes in the ELF analytes free and total human neutrophil elastase, Alpha₁-PI:HNE complexes, IL-8, and TNF alpha were either not statistically significant, or could not be analyzed due to limited data.

Figure 2 Changes in ELF Alpha₁-PI (AAT) Levels Following Intravenous Treatment with ARALAST NP (60 mg/kg/week) for 8 Weeks in Subjects with Severe Congenital Alpha₁-PI Deficiency

The clinical efficacy of ARALAST NP or any Alpha₁-PI product in influencing the clinical course of pulmonary emphysema in Alpha₁-PI deficiency has not been conclusively demonstrated in adequately powered, randomized, controlled clinical trials.

15 REFERENCES

16 HOW SUPPLIED/STORAGE AND HANDLING

How Supplied

ARALAST NP is available in the following kits:

<table>
<thead>
<tr>
<th>Fill Size</th>
<th>Carton NDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 gram</td>
<td>0944-2814-01</td>
</tr>
<tr>
<td>1 gram</td>
<td>0944-2815-01</td>
</tr>
</tbody>
</table>

Each kit contains a suitable volume of Sterile Water for Injection, USP diluent (25 mL for 0.5 gram vial; 50 mL for 1 gram vial), one sterile double-ended transfer needle, one sterile 20 micron filter and one package insert.

Storage and Handling

- Store ARALAST NP at temperatures not to exceed 25°C (77°F).
- Do not freeze.
- Do not use after the expiration date printed on the label.
- Store ARALAST NP in the original carton to protect from light.

17 PATIENT COUNSELING INFORMATION

- Inform patients of the early signs of hypersensitivity reactions, including hives, generalized urticaria, chest tightness, dyspnea, wheezing, faintness, hypotension, and anaphylaxis. Advise patients to discontinue use of the product and contact their physician and/or seek immediate emergency care, depending on the severity of the reaction. If these symptoms occur.
- Inform patients that ARALAST NP is made from human plasma, therefore the possibility of transmitting infectious agents cannot be totally excluded. Explain that the risk of transmitting an infectious agent has been reduced by screening donors, testing plasma for certain virus infections, and a manufacturing process to inactivate and/or remove certain viruses.
- Inform patients that administration of ARALAST NP has been demonstrated to raise the levels of Alpha₁-PI in the blood and in the lung, but that the effect of this augmentation on the frequency of pulmonary exacerbations and on the rate of progression of emphysema has not been established by clinical trials.

ARALAST NP® is a trademark of Baxalta Incorporated, a wholly-owned, indirect subsidiary of Shire plc. SHIRE and the Shire Logo are trademarks or registered trademarks of Shire Pharmaceutical Holdings Ireland Limited or its affiliates. Prolastin is a trademark of Talecris Biotherapeutics, Inc.

Manufactured by:
Baxalta US Inc.
Lexington, MA 02421 USA
U.S. License No. 2020
S45941 02/19